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Abstract. This paper addresses policies and agreements between suppliers and customers for hand-
ling supply shortages in base-stock systems under uncertain demand. We investigate the impacts that
backlogging and expediting decisions have on inventory and transportation costs in these systems and
develop a model for deciding whether a supplier should completely backlog, completely expedite,
or employ some combination of backlogging and expediting shortages. Our results indicate that
practical cases exist where some combination of both expediting and backlogging supply shortages
outperforms either completely expediting or backlogging all shortages. Including transportation costs
in our model provides incentive to employ ‘hybrid’ policies that partially expedite and partially back-
log excess demands within a given period. Our model demonstrates how inventory policy decisions
directly impact transportation costs and provides a heuristic approach for jointly minimizing expected
inventory and transportation costs.
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1. Introduction

Distribution operations form the backbone of supply chain material flows, and
efficient management of these operations is, therefore, a key to enabling good
supply chain performance. Distribution Center (DC) operations provide a natural
focal point for studying mechanisms to improve cost performance in supply chains.
Distributors of consumer goods typically maintain inventories and provide delivery
service for the customers they serve. Inventory and transportation-related costs
comprise the bulk of costs for these distributors, and effectively managing these
costs, therefore, contributes significantly to the chain’s ability to provide products
at competitive prices. Since many of today’s retail chains possess considerable
power in the distribution chain, they can often dictate delivery terms to less power-
ful distributors and suppliers. The ability for distributors and suppliers to meet
strict delivery requirements while controlling logistics costs is a significant factor
in determining the chain’s long-term success.

Traditional models of distribution operations, with several exceptions that we
note later, have considered the transportation and inventory decision problems
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independently. This paper takes an integrated modeling approach for inventory
and transportation decisions in base-stock systems under periodic and stationary,
stochastic demand. Specifically, we consider how inventory shortage policies and
agreements affect both inventory and transportation costs in these systems. By
base-stock systems, we mean systems that use a periodic-review inventory control
system and employ a policy that brings inventory position up to some target level
(a decision variable) at the beginning of each planning period. Such systems are
not uncommon in practice, since a base-stock policy constitutes an optimal policy
structure for periodic review inventory systems where product procurement costs
are proportional to the volume purchased, and inventory holding and shortage costs
are proportional to the inventory on-hand and backordered, respectively, at the
end of a period (see Karlin, 1958). Although many distribution contexts require
a fixed order or delivery cost each time an order is placed (hence violating the
assumption of linear procurement costs and resulting in the sub-optimality of base-
stock policy structures), in many cases these order costs are either small due to
electronic ordering capabilities, or they are constant due to a fixed weekly delivery
schedule. In such contexts these fixed costs are, therefore, outside the control of
the decision maker.

When a customer places demands on a supplier that exceed the supplier’s stock
levels one of three outcomes typically occurs:
(1) The supplier can expedite the product from an external source (such as an-

other supplier or another distribution center) for immediate delivery to the
customer,

(2) The customer can agree to wait another period for demand satisfaction, res-
ulting in a backorder, or

(3) If the supplier finds it too costly to expedite the product and the customer
refuses to wait an additional period, a lost sale results.

We demonstrate the important impacts these shortage policy decisions and agree-
ments have on transportation costs, and emphasize the need for customers and sup-
pliers to work together to achieve lower system cost performance. These choices
involve an important tradeoff: choosing to backlog demand may in certain con-
texts increase shortage costs, such as loss-of-goodwill and administration expenses;
however, as we will show, this decision can decrease expected transportation costs.
So, even for cases where the unit backlogging cost exceeds the unit expediting cost,
it may be more economical to backlog shortages due to savings in transportation
costs. The supplier may be able to use these potential savings to negotiate delivery
terms with customers by offering product discounts.

This work builds on prior work by Geunes and Zeng (2001) that shows the
impacts backlogging decisions have on transportation costs in base-stock distribu-
tion operations. Their work shows that a policy that backlogs supply shortages can
substantially reduce expected transportation costs (and overall distribution costs)
when compared to a policy that expedites shortages. This cost reduction does not
simply result from a lower cost per unit of backlogging (although this may be a
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contributing factor if the unit expediting cost exceeds the unit backlogging cost),
but from a reduction in the variability of transportation capacity requirements and,
hence, transportation costs.

Geunes and Zeng (2001) propose a method for determining per-unit product
discounts based on the cost savings due to backlogging, which may induce a cus-
tomer to allow the supplier to backlog shortages. Their model and methodology,
however, assume a strict choice between backlogging and expediting for all supply
shortages in every period. We consider a hybrid approach that allows for partial
expediting and backlogging of supply shortages within a period. This approach
generalizes their model and, as our computational results show, can lead to lower
cost performance than policies that completely expedite all supply shortages, even
for a variety of cases where the unit backlogging cost exceeds the unit expediting
cost. Our model also generates insights for managing supply shortages, and for
negotiating delivery agreements between a supplier and customer.

This paper is organized as follows. Section 2 contains our model, its relation to
the literature, and some interesting properties and insights derived from the model.
Section 2.1 reviews prior literature on relevant integrated inventory-transportation
models in supply chains. Section 2.2 describes our combined inventory and trans-
portation model with partial backlogging and expediting in base-stock systems
under periodic review. Section 2.3 formulates the decision problem and establishes
optimal policies for the problem in the absence of transportation costs. Section 3
studies the system under normally distributed demand and presents computational
results that demonstrate the ability for our model to lead to lower cost solutions
than under complete backlogging or complete expediting, while Section 4 presents
concluding remarks.

2. Base stock system model with partial backlogging

This section presents a model of a base-stock distribution operation that allows
partial backlogging and partial expediting of supply shortages. This model con-
siders both inventory- and transportation-related costs at the DC. We first review
related literature on combined inventory and transportation models under uncer-
tain demand, in addition to past stochastic inventory models that allow partial
backlogging.

2.1. RELATED LITERATURE

In one of the earliest models to combine inventory and transportation costs in
a stochastic setting, Federgruen and Zipkin (1984) considered a one-warehouse,
multiple-retailer system with random retailer demands in a single-period frame-
work. Their model determines vehicle routes and inventory allocation and allows
for portions of retailer orders to be filled (and the rest backordered) if insufficient
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truck capacity exists. Yano and Gerchak (1989) considered a two-stage system in
which a manufacturing plant supplies an assembly plant with Just-in-Time (JIT)
shipments of a high-volume part. They did not allow for backordering; instead
they allowed for emergency shipments of parts when insufficient vehicle capacity
exists. Their model determines the order-up-to point (base-stock level) for the part,
the time between successive deliveries, and the number of vehicles contracted for
deliveries between the supplier and assembly plant. The model minimizes the sum
of expected inventory costs, contracted shipment costs, and emergency shipment
costs. Ernst and Pyke (1993) built on the work of Yano and Gerchak (1989) by
including the manufacturer’s (or, in their case, the warehouse’s) expected inventory
costs plus per unit shipping costs (as opposed to a per truck shipping cost only).
Henig et al. (1997) considered a combined inventory and transportation problem
for a base-stock system in which the order cost equals zero for quantities below
some contracted value of truck capacity, R. Their model applies a premium of k
(dollars per unit) for quantities exceeding R, and they develop an optimal inventory
replenishment policy structure that contains two base-stock levels, S1 and S2 (with
S2 � S1). The optimal policy orders up to S1 or S2, or orders a fixed quantity of R,
depending on the inventory position before ordering.

Qu et al. (1999) presented a continuous-time model of a multi-item system in
which a central warehouse collects items from a set of suppliers. Their model
considers distance-related routing plus stopover transportation costs, in addition
to inventory ordering, holding, and backlogging costs, and minimizes average cost
per unit time under a so-called modified periodic policy, in which the replenishment
interval must be a multiple of some base planning cycle length. Their solution
methodology decomposes the problem into separate inventory and transportation
submodels.

Each of the stochastic models that combine inventory and transportation de-
cisions we have summarized assumes that supply shortages are either completely
backlogged or completely expedited. To our knowledge, no combined inventory
and transportation model exists that allows for partial backlogging and partial
expediting, while considering the impacts these decisions have on transportation
costs, as we consider in this paper. Several papers consider inventory systems that
allow for a combination of partial backlogging and partial lost sales when demand
exceeds stock, including Thowsen (1975), Rosenberg (1979), Mak (1987), Pad-
manabhan and Vrat (1990, 1995), Abad (1996), and Vasudha Warrier and Shah
(1999). While these articles address additional extensions, such as optimal pri-
cing and demand perishability, they do not consider combining backlogging and
expediting, and they include only inventory-related costs.

2.2. SYSTEM MODEL UNDER PARTIAL BACKLOGGING AND EXPEDITING

This section presents our model assumptions and develops expressions for average
cost per period over an infinite horizon under these assumptions. We consider a
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distribution center (DC) that periodically delivers items to a customer or a set of
customers using a fleet of trucks. We assume that the DC follows a fixed deliv-
ery schedule, i.e., the time between successive deliveries is fixed. Our experience
has shown that many such fixed delivery schedules occur in practice where, for
example, a DC makes weekly trips to customers to deliver goods and receives
weekly deliveries from its supplier. For clarity of presentation, we consider a single
customer, although this single customer may represent a concentrated cluster of
customers in a geographical region aggregated into a ‘super-customer’. We do not,
therefore, consider vehicle routing costs; rather we focus on vehicle fleet operating
costs, including the fixed costs of owning and maintaining vehicles plus transport-
ation costs that depend on the volume shipped in each period. If the DC places
orders to its supplier electronically and receives shipments from its supplier each
week, then in many cases the DC need not consider an explicit fixed ordering cost
for inventory replenishments. We assume that the lead time for replenishing DC
inventory is significantly less than the period length and that the DC’s supplier has
infinite capacity, i.e., when the DC assesses its inventory level at the end of a week
and places an order with its supplier, delivery is made in full at the beginning of
the following week.

The sequence of events in a period occurs as follows. The DC receives a re-
plenishment delivery from its supplier at the beginning of the period that brings the
DC’s inventory position up to some base-stock level (a decision variable). The DC’s
customer then places an order with the DC. If the customer’s order quantity does
not exceed the DC’s stock level, immediate delivery of the entire order is made to
the customer. If the DC does not have enough stock to meet the customer’s demand,
the DC can receive an immediately expedited order from its supplier or it can
backorder the excess demand for delivery in the following period. Alternatively,
the DC can choose to expedite a portion of the demand in excess of stock and to
backlog the remainder until the following period. If the amount that the DC must
ship in the current period does not exceed the DC’s total vehicle capacity, then the
DC uses its own vehicle fleet to transport the entire shipment. Any amount that the
DC must ship exceeding the DC’s fleet capacity is shipped using an outside LTL
(less-than-truckload) carrier.

Our model assumes that the DC and customer agree upon a maximum amount
of demand in any period that the DC will deliver in that period, which we call the
maximum current demand shipped (MCDS), and that this amount is the same in
all periods. The DC further guarantees delivery of any backlogged demand in the
period immediately following the shortage. This implies that if the customer’s de-
mand in a period exceeds DC supply, the DC expedites the difference between the
order quantity and its stock level, up to the MCDS. The total shipment in a period
then equals the minimum between the current period’s demand and the MCDS,
plus the prior period’s outstanding backlog. We note that the assumption of a fixed
MCDS for all periods restricts us to a subset of all possible partial backlogging
and expediting decision rules. The class of all possible partial backlogging and
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expediting decision rules includes policies that allow the MCDS to vary in different
periods in addition to policies that impose no MCDS at all. A fixed value of MCDS,
however, allows us to demonstrate that partial backlogging and expediting policies
exist that outperform strictly backlogging or expediting (with respect to expected
inventory plus transportation costs), even for cases where the unit backlogging cost
exceeds the unit expediting cost.

2.2.1. Transportation cost model

The transportation cost model we present next is a special case of that developed by
Ernst and Pyke (1993). Since transportation capacity is a long-term decision that
is not easily changed from period to period, our approach minimizes the expected
transportation cost as a function of the fleet capacity, the decision variable, and
the probability distribution of shipping quantity in a period, which is a function of
both the customer demand and, as we discuss later, the shortage policy used. Let
T denote a variable for the DC’s in-house truck fleet capacity. The transportation
costs in a period include a fixed cost per shipment (which is a function of the fleet
capacity), g(T ), a cost per unit shipped via in-house truck capacity, KR, and a cost
per unit shipped via LTL capacity, KC (note that this cost per unit for using an LTL
carrier could also represent the cost of arranging an additional ‘overtime’ shipment
using in-house truck capacity). The cost per unit for using an outside carrier (or an
overtime shipment) is typically much greater than that for using regular, in-house
capacity, and we therefore assume KC > KR throughout our analysis. The fixed
cost per shipment function, g(T ), typically includes elements such as leasing cost,
driver and fuel costs, and the costs of loading and unloading the vehicle(s).

Daganzo (1991) characterizes g(T ) as a subadditive and increasing step func-
tion which is often approximated by a linear or concave function. We adopt a linear
approximation for g(T ), using the approximation g(T ) ∼= KRLT . Let Qs denote
a random variable for the quantity shipped to the customer in a period and let
fq(Qs) and Fq(Qs) denote the pdf and cdf of the same. (We address the form of
this distribution later in this section, since it is directly impacted by our inventory
decisions.) The expected transportation-related costs per period then become

K(T ) = (KRL + KR) T − KR

∫ T

0
(T − Qs)fq(Qs)dQs + (1)

KC

∫ ∞

T

(QS − T )fq(Qs)dQs,

with the minimizing value of T satisfying the equation

Fq

(
T ∗) = [(KC − (KRL + KR)]/(KC − KR). (2)

If we require that T takes one of a discrete set of values (which is typical of truck ca-
pacity), we can simply round the value of T ∗ to the nearest higher or lower discrete
value (whichever of these gives the lower expected cost) due to the convexity of the
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expected transportation cost equation. Note that if the condition KC > KRL + KR

is not met, then it is optimal for the DC to use the excess carrier exclusively and
T ∗ = 0.

2.2.2. Inventory cost model

We assume that the DC’s customer has a known probability distribution of demand
in every period and that successive demands from the customer are independent and
identically distributed (iid). Let x denote a random variable for customer demand
in a period with mean µ and standard deviation σ , and let f (x) and F(x) denote
the pdf and cdf of single-period demand. Let c denote the cost per unit of product
procured from the DC’s supplier and let h denote the inventory holding cost per unit
of inventory remaining at the DC at the end of a period, where h is proportional
to c. Let p denote the cost per unit of backlogged demand at the DC (this cost
typically includes administrative and loss-of-goodwill costs) and let e′ denote the
incremental cost (above the procurement cost) of immediately expediting items
from the supplier. Let S1 denote a decision variable for the base-stock level held
at the DC and let S2 denote the MCDS, also a decision variable. S2 equals S1 plus
the maximum amount the DC plans to expedite from its supplier in a period (any
demand in excess of S2 is backlogged). We can alternatively view S2 as the back-
log threshold level. The average DC inventory procurement, holding, and shortage
costs per period over an infinite horizon, G(S1, S2) can be written as

G(S1, S2) = cµ + h

∫ S1

0
(S1 − x)f (x)dx + e′

∫ S2

S1

(x − S1)f (x)dx (3)

+ e′(S2 − S1)(1 − F(S2)) + p

∫ ∞

S2

(x − S2)f (x)dx

Note that in this system no demand is ever lost to the DC, since excess demand
over the MCDS is backlogged. Note also that complete expediting is a special case
of Equation (3) with S2 = ∞, and complete backlogging is the special case where
S1 = S2.

2.2.3. Impacts of stock levels on transportation costs

We next consider how inventory stock level decisions influence transportation costs.
If all demand in excess of DC stock is immediately expedited in each period (i.e.,
S2 = ∞ in Equation (3)), then the shipment quantity, Qs , will exactly equal the
demand, x, and we have fq(Qs) = f (x) in Equation (1). Expediting, therefore,
allows the decisions on transportation capacity and inventory stock level to be made
independently from each other, since the stock levels do not affect transportation
costs, nor does transportation capacity affect inventory costs. Under our assump-
tions then, we only need to separately minimize two convex functions (1) and (3),
each of a single variable, and the optimal solutions are easily found.
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If, on the other hand, all demand in excess of DC stock is completely back-
logged in every period (S1 = S2 = S in Equation (3)), Geunes and Zeng (2001)
show that the inventory and transportation problems are not separable. In this case
the shipment quantity in a period, Qs , becomes a function of the stock level, S, and
the expected transportation cost must be written as a function of not only T, but also
S. If we let xt denote a random variable for demand in period t, then the amount
backlogged from the period immediately preceding period t equals (xt−1−S)+, i.e.,
the amount by which last period’s demand exceeded the stock level. The amount
shipped to meet current demand will equal the minimum between xt and S. The
total amount shipped in period t, which we denote by Qs,t , will equal the sum
of these quantities, i.e., Qs,t = (xt−1 − S)+ + Min{xt , S}. Since (xt−1 − S)+
depends only on S and xt−1, and Min{xt , S} depends on S and xt , and xt−1 and
xt are independent, we compute the variance of shipments under backlogging, σ 2

bl,
using σ 2

bl = Var[Qs,t] = Var[(xt−1 − S)+] + Var[Min{xt , S}]. Letting n(S) =∫ ∞
S

(x − S)f (x)dx denote the expected number of units short in a period given
a stock level of S, we can show the quantity shipped per period has mean µ and
variance

σ 2
bl = σ 2 − 2n(S){n(S) + (S − µ)}; (4)

(see Geunes and Zeng, 2001). Equation (4) reveals an important relationship bet-
ween backlogging and transportation costs in distribution systems: backlogging
excess demand decreases the variance of weekly shipment quantities when com-
pared to expediting and, therefore, results in lower expected transportation costs.
This decrease in variance results from the DC’s ability to pool demand from suc-
cessive periods within a common shipment. Geunes and Zeng (2001) further show
that under normal customer demand, the distribution of shipment quantity takes
a shape very close to that of a normal distribution (with an additional point mass
concentrated at the point S) when the DC’s base stock level exceeds the average
period demand by more than one standard deviation (which is highly likely in
most distribution systems for consumer goods). We can show that Equation (4) also
gives the variance of shipment quantities under the partial expediting and partial
backlogging scheme we described, with the MCDS, S2, replacing S in Equation
(4), i.e.,

σ 2
pbl = σ 2 − 2n(S2){n(S2) + (S2 − µ)}, (5)

where σ 2
pbl denotes the variance of shipment quantities under partial backlogging

with partial expediting up to the MCDS. Observe that for S2 > µ, Equation (5)
implies that the variance of shipment quantities is less than the variance of ship-
ments under complete expediting of shortages. Geunes and Zeng (2001) show that
complete backlogging of shortages leads to lower expected transportation costs
than complete expediting and can lead to lower total expected system costs, even
for cases in which the unit backlogging cost exceeds the unit expediting cost, due to
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transportation cost savings. Equation (5) indicates that a partial backlogging policy
also leads to lower expected transportation costs than a complete expediting policy.

The questions we seek to answer then, are whether or not solutions exist for the
partial expediting and backlogging case with lower expected system costs (trans-
portation plus inventory costs) than both the complete expediting and complete
backlogging cases and, if so, do the savings from these hybrid policies justify their
use in practice? Before answering these questions, we derive theoretical results that
support the findings of our computational tests by first considering properties of the
inventory cost function alone, and next considering the combined transportation
and inventory cost function.

2.3. PROPERTIES OF THE INVENTORY COST FUNCTION

Under our assumptions of a fixed value of truck capacity, a fixed MCDS, and iid
demands in all periods, we can show that a stationary base stock level, S1, exists
for minimizing the average cost per period over an infinite horizon. Combining this
with our results from the previous section implies that the optimization problem
the distributor faces for minimizing average inventory plus transportation costs per
period over an infinite horizon under partial backlogging and expediting can be
stated as follows:

Minimize G(S1, S2) + K(T, S2) (6)

Subject to: S2 � S1 � 0, (7)

where we now write transportation cost, K(T, S2), as a function of both transport-
ation capacity and the MCDS, based on our results from the preceding section. To
better understand the above problem, we first consider the system in the absence
of transportation costs. That is, we consider the problem of minimizing G(S1, S2)
over the region S2 � S1 � 0. The following lemma provides a condition that
guarantees the convexity of G(S1, S2).

LEMMA 1. If p � e′ then G(S1, S2) is convex in S1 and S2.
Proof. We need to show that the diagonal elements and the determinant of the

Hessian matrix are nonnegative for all values of S1 and S2. We can show that
∂2G/∂S2

1 = (h + e′)f (S1), ∂2G/∂S2
2 = (p − e′)f (S2), and ∂2G/∂S1∂S2 = 0,

which implies that the diagonal elements and the determinant of the Hessian matrix
are nonnegative whenever p � e′. �
Lemma 1 implies that the following proposition holds when p � e′:

PROPOSITION 1. If p � e′, then a solution exists that minimizes G(S1, S2) using
complete expediting of shortages. The stock levels S1=F−1(e′/(e′ +h)) and S2=∞
minimize G(S1, S2) in this case.
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Proof. Since G(S1, S2) is convex when p � e′ we need to find a stationary
point to find a global minimum. Equating ∂G/∂S1 and ∂G/∂S2 to zero produces
the result. �
Proposition 1 confirms the intuition that a policy of fully expediting shortages is
optimal when the unit cost of backlogging is greater than or equal to the unit cost
of expediting. The following lemma shows that whenever e′>p, if we are given any
solution (S1, S2) = (S ′

1, S
′
2), with S ′

2 > S ′
1, then the solution S1 = S2 = S ′

1 always
results in an expected cost less than or equal to G(S ′

1, S
′
2).

LEMMA 2. Suppose e′ > p and consider any solution (S ′
1, S

′
2) with S ′

2 > S ′
1.

The solution S1 = S2 = S ′
1 has an expected cost less than or equal to the solution

(S ′
1, S

′
2), i.e., G(S ′

1, S
′
2) � G(S ′

1, S
′
1).

Proof. We can show that G(S ′
1, S

′
2) − G(S ′

1, S
′
1) = (e′ − p)(n(S ′

1) − n(S ′
2)),

which is greater than or equal to zero for any S ′
2 > S ′

1. �
Lemma 2 implies that we can drop the expediting cost term from Equation (3),
and we are left with the case of complete backlogging, in which case the optimal
solution is given by S1 = S2 = F−1(p/(p + h)), which is consistent with existing
results (see Nahmias, 2001).

3. Base-stock system under normally distributed demand

This section considers the base-stock system we have described under normally
distributed customer demand and derives properties associated with the total ex-
pected system costs (note that although we assume normally distributed demand,
we also assume a negligible probability of negative demand). Section 3.1 presents a
convex heuristic approximation for the transportation cost Equation (1) as a func-
tion of the transportation capacity and the MCDS, which we use in our solution
procedure. Section 3.2 then provides results from a set of computational tests based
on the approximate expected total system cost equation we derive.

3.1. STOCK LEVEL DECISIONS IN THE PRESENCE OF TRANSPORTATION COSTS

Under normally distributed customer demand, the values of S1 and S2 can be sub-
stituted by their standardized values, k1 = (S1 − µ)/σ and k2 = (S2 − µ)/σ ,
respectively. Letting L(k) denote the standard unit normal loss integral, i.e., L(k) =∫ ∞
k

(u − k)φ(u)du (where φ(u) denotes the pdf of the standard unit normal distri-
bution), then the inventory cost Equation (3) under normally distributed customer
demand becomes

G(k1, k2) = cµ + hσ(k1 + L(k1)) + e′σ (L(k1) − L(k2)) + pσL(k2), (8)
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Methods for finding a minimizing solution for (8) were described in the previous
section. We next consider the problem with the addition of the expected transporta-
tion cost, K(T, k2), which includes the additional truck capacity decision variable,
T, and results in the nonlinear program given by (6) and (7). Equation (1) gives
the expected transportation cost as a function of the transportation capacity, T,
and the distribution of shipments, fq(Qs). We noted in the previous section that
Qs is a random variable with mean µ (the mean period demand) and variance
σ 2
pbl = σ 2 − 2n(S2){n(S2) + (S2 − µ)}, and that Qs is approximately normally

distributed when customer demand is normally distributed. Using a normal approx-
imation for fq(Qs) and letting nq(T ) = ∫ ∞

T
(Qs − T )fq(Qs)dQ, we can rewrite

Equation (1) as

K(T, S2) = KRLT + KRµ + (KC − KR)nq(T ), (9)

where the dependence of expected transportation cost on S2 is reflected through the
variance of the distribution of Qs . If we let kT = (T −µ)/σpbl, then under normal
customer demand Equation (9) becomes

K(T, k2) = KRLT + KRµ + (KC − KR)σpblL(kT ). (10)

Equation (10) encodes an extremely complex relationship between k2 (the normal-
ized MCDS), the truck capacity, T , and expected transportation costs that has not
led to tractable mathematical analysis of the properties of the cost function. We
therefore develop a heuristic approximation for K(T, k2) that allows us to obtain
good solutions.

Assuming a normal distribution of shipment quantities, we can rewrite Equation
(5) in the form σpbl = σ

√
1 − 2[L(k2)]2 − 2L(k2)k2 ≡ θσ , and we therefore

have nq(T ) = θσL(kT ). Geunes and Zeng (2001) show that, under normal de-
mand, the relationship between k2 and θ can be closely approximated by a linear
function over the range of k2=[0, 3], i.e., θ ∼= θ̂ = c1 + c2k2, where c1 and c2

are positive constants determined by performing a linear fit of θ against k2. They
further show that the unit normal loss integral can be effectively (heuristically)
approximated by an exponential function over this region and use the approxim-
ation L(kT ) ∼= c3 exp(−c4kT ) ≡ L̂(kT ), where c3 and c4 are positive constants
determined through an exponential fit for the loss function. Approximating kT us-
ing kT ∼= (T −µ)/(σ (c1+c2k2)) we arrive at the following heuristic approximation
for nq(T ), which is also a function of k2:

nq(T , k2) = σpblL(kT ) ∼= (c1 + c2k2)σ c3 exp

(
− c4(T − µ)

σ (c1 + c2k2)

)
. (11)

Our approximation for the expected transportation cost equation then becomes

K̂(T , k2) = KRLT + KRµ + (KC − KR)

×(c1 + c2k2)σ c3 exp

(
− c4(T − µ)

σ (c1 + c2k2)

)
. (12)
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Geunes and Zeng (2001) show that K̂(T , k2) is a convex function of T and k2 and
a strictly increasing function of k2 for T � µ and k2 � 0.

Let H(K1, k2, T ) denote the sum of expected single-period inventory costs
(Equation 8) and single-period transportation costs (Equation 10) and let Ĥ (k1, k2,

T ) denote the approximation for H(k1, k2, T ) obtained by replacing K(T, k2) with
its approximation, K̂(T , k2) given in Equation (12). The optimization problem for
minimizing approximate expected total system cost per period is given by

[ETSC] Minimize Ĥ (k1, k2, T ) = G(k1, k2) + K̂(T ,K2) (13)

Subject to: 0 � k1 � k2 � 3, T ∈ {iT0, (i + 1)T0, ..., mT0}, (14)

where T0 denotes the standard truck capacity, i is the smallest integer such that
iT0 � µ, and m is the smallest integer such that mT0 � µ + 3σ (we confine
ourselves to integer multiples of some base truck capacity size, T0, at least as great
as the mean period demand and not exceeding three standard deviations above the
mean period demand).

Since G(k1, k2) is convex when p � e′, and K̂(T , k2) is convex in T and k2,
this implies that Ĥ (k1, k2, T ) is convex when p � e′. We are primarily interested
in cases in which the expediting cost per unit is less than that for backlogging (i.e.,
p > e′), so we can ascertain whether practical cases exist that call for at least
some level of backlogging (if not complete backlogging) due to the transportation
cost savings backlogging can induce. Our computational tests therefore focus on
cases in which p > e′. (Since p � e′ favors complete backlogging with respect
to both inventory and transportation costs, we have not considered this case in our
computational tests.) To provide more compact notation in our subsequent analysis,
we let θ̂ denote our linear approximation for θ , i.e., θ̂ = c1+c2k2, and let k̂T denote
our approximation for kT , i.e., k̂T = (T − µ)/(σ θ̂). Using this notation, we can
derive the following first-order optimality conditions for [ETSC]:

'(k∗
1) = e′/(e′ + h) (15)

'(k∗
2) = (p − e′) − (KC − KR)c2c3 exp

( − c4k̂T
)(

1 + c4k̂T
)

(p − e′)
(16)

T ∗ = µ − (
σ θ̂/c4

)
ln

(
KRL

(KC − KR)c3c4

)
(17)

Since [ETSC] is a convex program, if we can find a feasible solution to [ETSC]
satisfying the above conditions, then this solution is optimal. We first make some
observations about these first-order conditions. It is interesting to note that the
optimal value of k1 is the same as that for the complete expediting case, which
implies that the stock level is only a function of the relative values of the unit
holding and expediting costs when p > e′. Note also that in Equation (17) T ∗ is a
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function of k2 while in Equation (16) '(k∗
2) is a function of T. We therefore require

an iterative procedure to find the optimal continuous value of T ∗. However, since
we confine ourselves to a limited set of discrete values of T, this enables us to find
the value of k2 that solves (16) for each value of T that we consider. Equation (16)
does not, however, provide a closed-form solution for k2 and so we must implement
a search procedure to find whether a solution exists that satisfies this equation (in
our computational tests, described in the next section, we were always able to find
a solution that approximately satisfied Equations (15–17)). Equation (16) indicates
that cases can exist where the optimal value of k2 is finite, i.e., we do not fully
expedite even when p>e′ in all cases. The computational test results presented in
the following section bear this out. In fact we have found several instances for
which the optimal solution completely backlogs all shortages, even though p>e′.
For these cases, we obviously have equality holding between the right hand sides
of Equations (15) and (16) in the optimal solution, i.e., k∗

1 = k∗
2 .

3.2. COMPUTATIONAL EXPERIMENTS

The preceding sections provide analytical results regarding the performance of
our two options for handling excess demands (complete expediting versus par-
tial expediting and backlogging) when the unit backlogging cost exceeds the unit
expediting cost. This section provides a number of test examples that confirm our
analytical results and provide additional managerial insights. We use the minimum
expected inventory plus transportation cost per period (after subtracting the con-
stant expected procurement cost per period, cµ) under the partial expediting and
backordering (PEB) approach, which we denote by T C∗

PEB, as a basis for compar-
ing our results. We refer to policies that use partial expediting and backlogging as
hybrid policies. Note that we use our heuristic approximation methods for nq(T )

strictly to determine the appropriate values of k∗
1 (normalized base-stock level) and

k∗
2 (normalized MCDS). Given k∗

1 and k∗
2 , we then explicitly calculate the value

of nq(T ) using only the normal approximation for Qs . That is, we eliminate the
linear approximation for σpbl and the exponential approximation for L(kT ) and
calculate these quantities directly (assuming normality of shipment quantity) when
computing T C∗

PEB to obtain a more accurate estimate of the optimal cost of a hybrid
policy (under our hybrid policy structure assumptions). Letting HN(k1, k2, T ) de-
note the value of H(k1, k2, T ) using the normal approximation for the distribution
of Qs as the only source of approximation, then we have T C∗

PEB = HN(k
∗
1 , k

∗
2 , T

∗),
where k∗

1 , k
∗
2 , and T ∗ solve formulation [ETSC]. If we let T C∗

CE denote the optimal
total costs under complete expediting (CE), we can use the following formula to
calculate the percentage cost savings from using a hybrid policy:

ω = [(
T C∗

CE/T C∗
PEB

) − 1
] × 100 (18)

We chose the following parameters as base values for our numerical study:
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Table 1. Computational test parameters

Scenarioa

I II III

Unit backlog cost, p 0.1 0.5 1

Procurement cost, c {1,2,3,4,5} {1,2,3,4,5} {1,2,3,4,5}

Expediting cost, KC = e′ {0.03, 0.06, 0.095} {0.1, 0.25, 0.49} {0.33, 0.67, 0.95}

aEvery combination of parameters was tested within each scenario.

Table 2. Comparison of partial backordering (PEB) with complete expediting (CE) scenario
I: p = 0.1

c e′ = 0.03a e′ = 0.06 e′ = 0.095

k∗
1 k∗

2 ω k∗
1 k∗

2 ω k∗
1 k∗

2 ω

1 1.1 ∞ 0% 1.4 2.8 0.001% 1.5 1.5 1.23%

2 0.7 ∞ 0% 1.1 2.8 0.001% 1.2 1.2 1.78%

3 0.4 ∞ 0% 0.8 2.8 0.001% 1 1 2.08%

4 0.3 ∞ 0% 0.7 2.8 0.001% 0.9 0.9 2.28%

5 0.1 ∞ 0% 0.5 2.8 0.001% 0.8 0.8 2.32%

aUnit overflow carrier cost, KC , is set equal to unit expediting cost, e′, in all test cases.

h h′ T0 µ σ KRL KR

$0.005c = KC 40 000 lbs 100 000 lbs 30 000 lbs $0.007817 $0.01

We have based this choice of parameters on weekly cost figures provided in an
unrelated computational study of the distribution system of a Fortune 500 manu-
facturer (see Geunes, 1999). To provide a broad scope of test results, we varied
the procurement cost per unit, c, the cost per unit for shipping via common carrier,
KC , and the cost per unit of backlogged demand, p, as shown in Table 1. Since the
unit holding cost, h, is proportional to the unit procurement cost c, this implies that
varying c is, therefore, equivalent to varying the unit holding cost. For each of the
cost combinations tested, we calculated the minimum total costs of the two policies
(hybrid policy and complete expediting) and the associated percentage savings
of the hybrid policy. We have adopted a tabular format to present the numerical
results, which we discuss later in this section.

Due to the convexity of the expected total cost Equation (13), the values of the
two policy parameters, (k1, k2), that optimize the problem given in (13) and (14)
could easily be found by a simple search of discrete points (in multiples of 0.1)
over the space 0 � k1 � k2 � 3 (although we realize that discretizing the points in
this space results in a slight loss of accuracy). This procedure is a simple routine
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Table 3. Comparison of partial backordering (PEB) with complete expediting (CE) scenario
II: p = 0.5

c e′ = 0.10a e′ = 0.25 e′ = 0.49

k∗
1 k∗

2 ω k∗
1 k∗

2 ω k∗
1 k∗

2 ω

1 1.6 ∞ 0% 2 ∞ 0% 2 2 1.18%

2 0.3 ∞ 0% 1.7 ∞ 0% 1.7 1.7 1.97%

3 1 ∞ 0% 0.5 ∞ 0% 1.6 1.6 2.61%

4 0.9 ∞ 0% 1.4 ∞ 0% 1.5 1.5 3.10%

5 0.7 ∞ 0% 1.2 ∞ 0% 1.4 1.4 3.51%

aUnit overflow carrier cost, KC , is set equal to unit expediting cost, e′, in all test cases.

Table 4. Comparison of partial backordering (PEB) with complete expediting (CE) scenario
III: p = 1.0

c e′ = 0.33a e′ = 0.67 e′ = 0.95

k∗
1 k∗

2 ω k∗
1 k∗

2 ω k∗
1 k∗

2 ω

1 2.1 ∞ 0% 2.3 2.3 0.23% 2.2 2.2 0.78%

2 1.8 ∞ 0% 2.1 2.1 0.33% 2 2 1.42%

3 1.6 ∞ 0% 1.9 1.9 0.35% 1.9 1.9 1.90%

4 1.5 ∞ 0% 1.8 2.8 0.33% 1.8 1.8 2.32%

5 1.4 ∞ 0% 1.7 2.8 0.32% 1.7 1.7 2.70%

aUnit overflow carrier cost, KC , is set equal to unit expediting cost, e′, in all test cases.

and the searching time is short. For each test problem, we found a pair of optimal
solution values, (k∗

1, k
∗
2 ) (within the set of discretized points for k1 and k2), which

enables us to compare the performance of the two controlling policies in terms of
the minimum average cost per period of holding inventory, expediting, backlog-
ging, and transportation over an infinite horizon. Note that our search procedure
invariably produced results that approximately satisfied first-order conditions (15)
and (16).

Tables 2–4, categorized according to the three values of p, provide valuable
insights into the relationships among the policies under consideration. Most im-
portantly, these results identify cases where fully backlogging outperforms a policy
that allows any expediting, even when the unit backlogging cost exceeds the unit
expediting cost (these cases are italicized in the tables; note that in these cases
the unit backlogging and expediting costs are, however, very close in magnitude).
We also observe that some degree of backlogging was preferred in 25 of the 45
test cases. These results confirm that the magnitude of transportation cost savings
obtained by backlogging outweighs the increased backlogging cost in the majority
of test cases. As we would expect, when the unit expediting cost is significantly
smaller than the unit backlogging cost, we employ little or no backlogging.
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Further analysis of Tables 2–4 shows that increasing the unit product value, c
(and equivalently the unit holding cost, h), provides incentive to increase expediting
but not backlogging (except in the complete backlogging cases). In the partial back-
logging case, changing the degree of backlogging has no effect on holding costs,
and so changing the unit product value should not affect backlogging decisions.
This is consistent with Equations (15) and (16), which indicate that the backlogging
threshold level (or MCDS) level has no dependence on holding costs. Although the
average percentage cost savings due to hybrid policies is somewhat small, several
cases did exceed 2.5%, which can provide meaningful savings in many distribution
contexts. We also point out that these savings are sensitive to the cost and demand
parameters chosen (making a relative increase in transportation cost parameters
will favor higher cost savings).

To gauge the accuracy of our approximation for H(k1, k2, T ) (the average in-
ventory plus transportation cost per period; see Equation 13), we compared Ĥ (k∗

1,

k∗
2 , T

∗) (which incorporates our approximation scheme for σpbl and L(kT )) to the
value of HN(k

∗
1 , k

∗
2 , T

∗) (which includes the normality assumption for Qs as the
only source of approximation) in each of our 45 test cases. To avoid overstating
the accuracy of the approximation, we subtracted the expected procurement cost
per period (i.e., cµ, a constant) from both HN(k

∗
1 , k

∗
2 , T

∗) and Ĥ (k∗
1 , k

∗
2 , T

∗). We
computed the approximation error as the absolute value of the difference between
HN(k

∗
1 , k

∗
2 , T

∗) and Ĥ (k∗
1, k

∗
2 , T

∗) taken as a percentage of HN(k
∗
1, k

∗
2 , T

∗) (after
subtracting cµ from both cost terms). Our 45 test cases produced an average ap-
proximation error of 1.37%, with a range between 0.02 and 3.21%. For certain
parameters the cost approximation is quite good, although this error tends to de-
grade as the expected cost of exceeding truck capacity per period forms a greater
proportion of total costs. This is confirmed by the observation that the average
approximation error for Scenario III (2.07%) exceeded that for Scenario II (1.71%),
which exceeded that for Scenario I (0.33%). Note, however, that Tables 2–4 indic-
ate that despite this approximation error, we were still able to identify good values
of k∗

1 and k∗
2 that led to expected total cost improvements by using hybrid policies

(the figures in Tables 2–4 use HN(k
∗
1, k

∗
2 , T

∗) for comparison to the complete ex-
pediting case, i.e., the costs used to calculate the % savings reported in these tables
do not contain this approximation error).

An important message conveyed by the numerical illustrations indicates that in-
cluding transportation costs tends to favor hybrid policies due to the transportation
cost savings induced by backlogging. These analyses confirm our prior analytical
results and provide a tool for a distributor to use in negotiating with customers
regarding their shipping schedules when excess demands occur. The basic tradeoff
the distributor and customer face is the choice between a high fill rate (proportion of
demands met immediately from stock), which can be achieved through expediting,
versus a lower fill rate (using backlogging) that can result in lower total inventory
and transportation costs. Our model allows the distributor to capture the costs of
these tradeoffs and to present the customer a variety of fill rate choices at different
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product delivery prices. For example, the distributor can offer quantity discounts to
induce customers to wait one period to fulfill their partial backorders (see Geunes
and Zeng, 2001, for an illustration of how to set discount levels based on expected
cost savings), resulting in potential savings for both the distributor and customer.

4. Concluding remarks

Firms that provide inventory and delivery service for customers with varying de-
mands confront the complex problem of determining how to efficiently manage
inventory stock levels and transportation capacity. The effects that policies for
managing supply shortages have on transportation costs has received little attention
in prior literature. This paper attempts to partially fill this gap by providing a mod-
eling and (heuristic) optimization approach for determining the best combination
of inventory stock levels and transportation capacity when the distributor has both
expediting and backlogging options for dealing with supply shortages.

We studied two control policies, namely complete expediting and partial ex-
pediting and backlogging, and developed a model that considers both inventory-
related and transportation costs. This model enables us to analyze the impacts
inventory policy decisions have on expected transportation costs, and to obtain
solution procedures for setting stock levels that jointly minimize an approximate
expected transportation and inventory cost equation. Our numerical examples un-
der normally distributed demand showed that including transportation costs in the
model favors a hybrid usage of partially expediting and backlogging shortages. We
showed that these hybrid policies provide greater value under scenarios in which
the unit backlogging and expediting costs are close in magnitude. These cost sav-
ings can support delivery policy negotiations between a supplier and customers for
setting strategies to cope with excess demand. This work provides further evidence
of the importance of supplier-customer coordination in supply chains.

Our work has focused on the costs borne by the DC only. A more complete
systems approach would directly capture the economic impacts that these DC stock
level decisions have on the customer (retailer) as well. By doing this, we could
determine the appropriate decisions from the view of the entire system. However,
this work focused on the insights obtained regarding the value hybrid supply short-
age policies provide in managing DC operations, and particularly their impact on
expected transportation costs incurred by a DC. We briefly touched on the potential
for the DC to provide its customer economic incentives, such as product discounts,
as a method for sharing the economic gains from employing hybrid policies. Ex-
tending the model to a systems framework that includes customer costs directly in
the model provides a promising direction for further research.
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